字符串
首先来看段很简单的代码:
fn main() {
let my_name = "Pascal";
greet(my_name);
}
fn greet(name: String) {
println!("Hello, {}!", name);
}
greet 函数接受一个字符串类型的 name 参数,然后打印到终端控制台中,非常好理解,你们猜猜,这段代码能否通过编译?
error[E0308]: mismatched types
--> src/main.rs:3:11
|
3 | greet(my_name);
| ^^^^^^^
| |
| expected struct `std::string::String`, found `&str`
| help: try using a conversion method: `my_name.to_string()`
error: aborting due to previous error
Bingo,果然报错了,编译器提示 greet 函数需要一个 String 类型的字符串,却传入了一个 &str 类型的字符串,相信读者心中现在一定有几头草泥马呼啸而过,怎么字符串也能整出这么多花活?
在讲解字符串之前,先来看看什么是切片?
切片(slice)
切片并不是 Rust 独有的概念,在 Go 语言中就非常流行,它允许你引用集合中部分连续的元素序列,而不是引用整个集合。
对于字符串而言,切片就是对 String 类型中某一部分的引用,它看起来像这样:
let s = String::from("hello world");
let hello = &s[0..5];
let world = &s[6..11];
hello 没有引用整个 String s,而是引用了 s 的一部分内容,通过 [0..5] 的方式来指定。
这就是创建切片的语法,使用方括号包括的一个序列:[开始索引..终止索引],其中开始索引是切片中第一个元素的索引位置,而终止索引是最后一个元素后面的索引位置,也就是这是一个 右半开区间。在切片数据结构内部会保存开始的位置和切片的长度,其中长度是通过 终止索引 - 开始索引 的方式计算得来的。
对于 let world = &s[6..11]; 来说,world 是一个切片,该切片的指针指向 s 的第 7 个字节(索引从 0 开始, 6 是第 7 个字节),且该切片的长度是 5 个字节。
在使用 Rust 的 .. range 序列语法时,如果你想从索引 0 开始,可以使用如下的方式,这两个是等效的:
let s = String::from("hello");
let slice = &s[0..2];
let slice = &s[..2];
同样的,如果你的切片想要包含 String 的最后一个字节,则可以这样使用:
let s = String::from("hello");
let len = s.len();
let slice = &s[4..len];
let slice = &s[4..];
你也可以截取完整的 String 切片:
let s = String::from("hello");
let len = s.len();
let slice = &s[0..len];
let slice = &s[..];
在对字符串使用切片语法时需要格外小心,切片的索引必须落在字符之间的边界位置,也就是 UTF-8 字符的边界,例如中文在 UTF-8 中占用三个字节,下面的代码就会崩溃:
let s = "中国人";
let a = &s[0..2];
println!("{}",a);
因为我们只取 s 字符串的前两个字节,但是本例中每个汉字占用三个字节,因此没有落在边界处,也就是连 中 字都取不完整,此时程序会直接崩溃退出,如果改成 &s[0..3],则可以正常通过编译。 因此,当你需要对字符串做切片索引操作时,需要格外小心这一点, 关于该如何操作 UTF-8 字符串,参见这里。
字符串切片的类型标识是 &str,因此我们可以这样声明一个函数,输入 String 类型,返回它的切片: fn first_word(s: &String) -> &str 。
有了切片就可以写出这样的代码:
fn main() {
let mut s = String::from("hello world");
let word = first_word(&s);
s.clear(); // error!
println!("the first word is: {}", word);
}
fn first_word(s: &String) -> &str {
&s[..1]
}
编译器报错如下:
error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
--> src/main.rs:18:5
|
16 | let word = first_word(&s);
| -- immutable borrow occurs here
17 |
18 | s.clear(); // error!
| ^^^^^^^^^ mutable borrow occurs here
19 |
20 | println!("the first word is: {}", word);
| ---- immutable borrow later used here
回忆一下借用的规则:当我们已经有了可变借用时,就无法再拥有不可变的借用。因为 clear 需要清空改变 String,因此它需要一个可变借用(利用 VSCode 可以看到该方法的声明是 pub fn clear(&mut self) ,参数是对自身的可变借用 );而之后的 println! 又使用了不可变借用,也就是在 s.clear() 处可变借用与不可变借用试图同时生效,因此编译无法通过。
从上述代码可以看出,Rust 不仅让我们的 API 更加容易使用,而且也在编译期就消除了大量错误!
其它切片
因为切片是对集合的部分引用,因此不仅仅字符串有切片,其它集合类型也有,例如数组:
let a = [1, 2, 3, 4, 5];
let slice = &a[1..3];
assert_eq!(slice, &[2, 3]);
该数组切片的类型是 &[i32],数组切片和字符串切片的工作方式是一样的,例如持有一个引用指向原始数组的某个元素和长度。
字符串字面量是切片
之前提到过字符串字面量,但是没有提到它的类型:
let s = "Hello, world!";
实际上,s 的类型是 &str,因此你也可以这样声明:
let s: &str = "Hello, world!";
该切片指向了程序可执行文件中的某个点,这也是为什么字符串字面量是不可变的,因为 &str 是一个不可变引用。
了解完切片,可以进入本节的正题了。
什么是字符串?
顾名思义,字符串是由字符组成的连续集合,但是在上一节中我们提到过,Rust 中的字符是 Unicode 类型,因此每个字符占据 4 个字节内存空间,但是在字符串中不一样,字符串是 UTF-8 编码,也就是字符串中的字符所占的字节数是变化的(1 - 4),这样有助于大幅降低字符串所占用的内存空间。
Rust 在语言级别,只有一种字符串类型: str,它通常是以引用类型出现 &str,也就是上文提到的字符串切片。虽然语言级别只有上述的 str 类型,但是在标准库里,还有多种不同用途的字符串类型,其中使用最广的即是 String 类型。
str 类型是硬编码进可执行文件,也无法被修改,但是 String 则是一个可增长、可改变且具有所有权的 UTF-8 编码字符串,当 Rust 用户提到字符串时,往往指的就是 String 类型和 &str 字符串切片类型,这两个类型都是 UTF-8 编码。
除了 String 类型的字符串,Rust 的标准库还提供了其他类型的字符串,例如 OsString, OsStr, CsString 和 CsStr 等,注意到这些名字都以 String 或者 Str 结尾了吗?它们分别对应的是具有所有权和被借用的变量。
String 与 &str 的转换
在之前的代码中,已经见到好几种从 &str 类型生成 String 类型的操作:
- String::from("hello,world")
- "hello,world".to_string()
那么如何将 String 类型转为 &str 类型呢?答案很简单,取引用即可:
fn main() {
let s = String::from("hello,world!");
say_hello(&s);
say_hello(&s[..]);
say_hello(s.as_str());
}
fn say_hello(s: &str) {
println!("{}",s);
}
字符串索引
在其它语言中,使用索引的方式访问字符串的某个字符或者子串是很正常的行为,但是在 Rust 中就会报错:
let s1 = String::from("hello");
let h = s1[0];
该代码会产生如下错误:
3 | let h = s1[0];
| ^^^^^ `String` cannot be indexed by `{integer}`
|
= help: the trait `Index<{integer}>` is not implemented for `String`
深入字符串内部
字符串的底层的数据存储格式实际上是[ u8 ],一个字节数组。对于 let hello = String::from("Hola"); 这行代码来说,Hola 的长度是 4 个字节,因为 "Hola" 中的每个字母在 UTF-8 编码中仅占用 1 个字节,但是对于下面的代码呢?
let hello = String::from("中国人");
如果问你该字符串多长,你可能会说 3,但是实际上是 9 个字节的长度,因为大部分常用汉字在 UTF-8 中的长度是 3 个字节,因此这种情况下对 hello 进行索引,访问 &hello[0] 没有任何意义,因为你取不到 中 这个字符,而是取到了这个字符三个字节中的第一个字节,这是一个非常奇怪而且难以理解的返回值。
所以,可以看出来 Rust 提供了不同的字符串展现方式,这样程序可以挑选自己想要的方式去使用,而无需去管字符串从人类语言角度看长什么样。
还有一个原因导致了 Rust 不允许去索引字符串:因为索引操作,我们总是期望它的性能表现是 O(1),然而对于 String 类型来说,无法保证这一点,因为 Rust 可能需要从 0 开始去遍历字符串来定位合法的字符。
字符串切片
前文提到过,字符串切片是非常危险的操作,因为切片的索引是通过字节来进行,但是字符串又是 UTF-8 编码,因此你无法保证索引的字节刚好落在字符的边界上,例如:
let hello = "中国人";
let s = &hello[0..2];
运行上面的程序,会直接造成崩溃:
thread 'main' panicked at 'byte index 2 is not a char boundary; it is inside '中' (bytes 0..3) of 中国人
', src/main.rs:4:14
note: run with RUST_BACKTRACE=1
environment variable to display a backtrace
这里提示的很清楚,我们索引的字节落在了 中 字符的内部,这种返回没有任何意义。
因此在通过索引区间来访问字符串时,需要格外的小心,一不注意,就会导致你程序的崩溃!
字符串深度剖析
为啥 String 可变,而字符串字面值 str 却不可以?
就字符串字面值来说,我们在编译时就知道其内容,最终字面值文本被直接硬编码进可执行文件中,这使得字符串字面值快速且高效,这主要得益于字符串字面值的不可变性。不幸的是,我们不能为了获得这种性能,而把每一个在编译时大小未知的文本都放进内存中(你也做不到!),因为有的字符串是在程序运行得过程中动态生成的。
对于 String 类型,为了支持一个可变、可增长的文本片段,需要在堆上分配一块在编译时未知大小的内存来存放内容,这些都是在程序运行时完成的:
- 首先向操作系统请求内存来存放 String 对象
- 在使用完成后,将内存释放,归还给操作系统
其中第一部分由 String::from 完成,它创建了一个全新的 String。
重点来了,到了第二部分,就是百家齐放的环节,在有垃圾回收 GC 的语言中,GC 来负责标记并清除这些不再使用的内存对象,这个过程都是自动完成,无需开发者关心,非常简单好用;但是在无 GC 的语言中,需要开发者手动去释放这些内存对象,就像创建对象需要通过编写代码来完成一样,未能正确释放对象造成的后果简直不可估量。
对于 Rust 而言,安全和性能是写到骨子里的核心特性,如果使用 GC,那么会牺牲性能;如果使用手动管理内存,那么会牺牲安全,这该怎么办?为此,Rust 的开发者想出了一个无比惊艳的办法:变量在离开作用域后,就自动释放其占用的内存:
{
let s = String::from("hello"); // 从此处起,s 是有效的
// 使用 s
} // 此作用域已结束,
// s 不再有效,内存被释放
与其它系统编程语言的 free 函数相同,Rust 也提供了一个释放内存的函数: drop,但是不同的是,其它语言要手动调用 free 来释放每一个变量占用的内存,而 Rust 则在变量离开作用域时,自动调用 drop 函数: 上面代码中,Rust 在结尾的 } 处自动调用 drop。
这个模式对编写 Rust 代码的方式有着深远的影响。