枚举
枚举(enum 或 enumeration)允许你通过列举可能的成员来定义一个枚举类型,例如扑克牌花色:
enum PokerSuit {
Clubs,
Spades,
Diamonds,
Hearts,
}
如果在此之前你没有在其它语言中使用过枚举,那么可能需要花费一些时间来理解这些概念,一旦上手,就会发现枚举的强大,甚至对它爱不释手,枚举虽好,可不要滥用哦。
再回到之前创建的 PokerSuit,扑克总共有四种花色,而这里我们枚举出所有的可能值,这也正是 枚举 名称的由来。
任何一张扑克,它的花色肯定会落在四种花色中,而且也只会落在其中一个花色上,这种特性非常适合枚举的使用,因为枚举值只可能是其中某一个成员。抽象来看,四种花色尽管是不同的花色,但是它们都是扑克花色这个概念,因此当某个函数处理扑克花色时,可以把它们当作相同的类型进行传参。
细心的读者应该注意到,我们对之前的 枚举类型 和 枚举值 进行了重点标注,这是因为对于新人来说容易混淆相应的概念,总而言之: 枚举类型是一个类型,它会包含所有可能的枚举成员, 而枚举值是该类型中的具体某个成员的实例。
枚举值
现在来创建 PokerSuit 枚举类型的两个成员实例:
let heart = PokerSuit::Hearts;
let diamond = PokerSuit::Diamonds;
我们通过 :: 操作符来访问 PokerSuit 下的具体成员,从代码可以清晰看出,heart 和 diamond 都是 PokerSuit 枚举类型的,接着可以定义一个函数来使用它们:
fn main() {
let heart = PokerSuit::Hearts;
let diamond = PokerSuit::Diamonds;
print_suit(heart);
print_suit(diamond);
}
fn print_suit(card: PokerSuit) {
// 需要在定义 enum PokerSuit 的上面添加上 #[derive(Debug)],否则会报 card 没有实现 Debug
println!("{:?}",card);
}
print_suit 函数的参数类型是 PokerSuit,因此我们可以把 heart 和 diamond 传给它,虽然 heart 是基于 PokerSuit 下的 Hearts 成员实例化的,但是它是货真价实的 PokerSuit 枚举类型。
接下来,我们想让扑克牌变得更加实用,那么需要给每张牌赋予一个值:A(1)-K(13),这样再加上花色,就是一张真实的扑克牌了,例如红心 A。
目前来说,枚举值还不能带有值,因此先用结构体来实现:
enum PokerSuit {
Clubs,
Spades,
Diamonds,
Hearts,
}
struct PokerCard {
suit: PokerSuit,
value: u8
}
fn main() {
let c1 = PokerCard {
suit: PokerSuit::Clubs,
value: 1,
};
let c2 = PokerCard {
suit: PokerSuit::Diamonds,
value: 12,
};
}
这段代码很好的完成了它的使命,通过结构体 PokerCard 来代表一张牌,结构体的 suit 字段表示牌的花色,类型是 PokerSuit 枚举类型,value 字段代表扑克牌的数值。
可以吗?可以!好吗?说实话,不咋地,因为还有简洁得多的方式来实现:
enum PokerCard {
Clubs(u8),
Spades(u8),
Diamonds(u8),
Hearts(u8),
}
fn main() {
let c1 = PokerCard::Spades(5);
let c2 = PokerCard::Diamonds(13);
}
直接将数据信息关联到枚举成员上,省去近一半的代码,这种实现是不是更优雅?
不仅如此,同一个枚举类型下的不同成员还能持有不同的数据类型,例如让某些花色打印 1-13 的字样,另外的花色打印上 A-K 的字样:
enum PokerCard {
Clubs(u8),
Spades(u8),
Diamonds(char),
Hearts(char),
}
fn main() {
let c1 = PokerCard::Spades(5);
let c2 = PokerCard::Diamonds('A');
}
回想一下,遇到这种不同类型的情况,再用我们之前的结构体实现方式,可行吗?也许可行,但是会复杂很多。
再来看一个来自标准库中的例子:
struct Ipv4Addr {
// --snip--
}
struct Ipv6Addr {
// --snip--
}
enum IpAddr {
V4(Ipv4Addr),
V6(Ipv6Addr),
}
这个例子跟我们之前的扑克牌很像,只不过枚举成员包含的类型更复杂了,变成了结构体:分别通过 Ipv4Addr 和 Ipv6Addr 来定义两种不同的 IP 数据。
从这些例子可以看出,任何类型的数据都可以放入枚举成员中: 例如字符串、数值、结构体甚至另一个枚举。
增加一些挑战?先看以下代码:
enum Message {
Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),
}
fn main() {
let m1 = Message::Quit;
let m2 = Message::Move{x:1,y:1};
let m3 = Message::ChangeColor(255,255,0);
}
该枚举类型代表一条消息,它包含四个不同的成员:
- Quit 没有任何关联数据
- Move 包含一个匿名结构体
- Write 包含一个 String 字符串
- ChangeColor 包含三个 i32
当然,我们也可以用结构体的方式来定义这些消息:
struct QuitMessage; // 单元结构体
struct MoveMessage {
x: i32,
y: i32,
}
struct WriteMessage(String); // 元组结构体
struct ChangeColorMessage(i32, i32, i32); // 元组结构体
由于每个结构体都有自己的类型,因此我们无法在需要同一类型的地方进行使用,例如某个函数它的功能是接受消息并进行发送,那么用枚举的方式,就可以接收不同的消息,但是用结构体,该函数无法接受 4 个不同的结构体作为参数。
而且从代码规范角度来看,枚举的实现更简洁,代码内聚性更强,不像结构体的实现,分散在各个地方。
同一化类型
最后,再用一个实际项目中的简化片段,来结束枚举类型的语法学习。
例如我们有一个 WEB 服务,需要接受用户的长连接,假设连接有两种:TcpStream 和 TlsStream,但是我们希望对这两个连接的处理流程相同,也就是用同一个函数来处理这两个连接,代码如下:
fn new (stream: TcpStream) {
let mut s = stream;
if tls {
s = negotiate_tls(stream)
}
// websocket是一个WebSocket<TcpStream>或者
// WebSocket<native_tls::TlsStream<TcpStream>>类型
websocket = WebSocket::from_raw_socket(
stream, ......)
}
此时,枚举类型就能帮上大忙:
enum Websocket {
Tcp(Websocket<TcpStream>),
Tls(Websocket<native_tls::TlsStream<TcpStream>>),
}
Option 枚举用于处理空值
在其它编程语言中,往往都有一个 null 关键字,该关键字用于表明一个变量当前的值为空(不是零值,例如整型的零值是 0),也就是不存在值。当你对这些 null 进行操作时,例如调用一个方法,就会直接抛出null 异常,导致程序的崩溃,因此我们在编程时需要格外的小心去处理这些 null 空值。
尽管如此,空值的表达依然非常有意义,因为空值表示当前时刻变量的值是缺失的。有鉴于此,Rust 吸取了众多教训,决定抛弃 null,而改为使用 Option 枚举变量来表述这种结果。
Option 枚举包含两个成员,一个成员表示含有值:Some(T), 另一个表示没有值:None,定义如下:
enum Option<T> {
Some(T),
None,
}
其中 T 是泛型参数,Some(T)表示该枚举成员的数据类型是 T,换句话说,Some 可以包含任何类型的数据。
Option
再来看以下代码:
let some_number = Some(5);
let some_string = Some("a string");
let absent_number: Option<i32> = None;
如果使用 None 而不是 Some,需要告诉 Rust Option
当有一个 Some 值时,我们就知道存在一个值,而这个值保存在 Some 中。当有个 None 值时,在某种意义上,它跟空值具有相同的意义:并没有一个有效的值。那么,Option
简而言之,因为 Option
将 Option
let x: i8 = 5;
let y: Option<i8> = Some(5);
let sum = x + y;
如果运行这些代码,将得到类似这样的错误信息:
error[E0277]: the trait bound `i8: std::ops::Add<std::option::Option<i8>>` is
not satisfied
-->
|
5 | let sum = x + y;
| ^ no implementation for `i8 + std::option::Option<i8>`
|
很好!事实上,错误信息意味着 Rust 不知道该如何将 Option
换句话说,在对 Option
不再担心会错误的使用一个空值,会让你对代码更加有信心。为了拥有一个可能为空的值,你必须要显式的将其放入对应类型的 Option
那么当有一个 Option
总的来说,为了使用 Option
这里先简单看一下 match 的大致模样,在模式匹配中,我们会详细讲解:
fn plus_one(x: Option<i32>) -> Option<i32> {
match x {
None => None,
Some(i) => Some(i + 1),
}
}
let five = Some(5);
let six = plus_one(five);
let none = plus_one(None);
plus_one 通过 match 来处理不同 Option 的情况。
数组
在日常开发中,使用最广的数据结构之一就是数组,在 Rust 中,最常用的数组有两种,第一种是速度很快但是长度固定的 array,第二种是可动态增长的但是有性能损耗的 Vector,在本书中,我们称 array 为数组,Vector 为动态数组。
不知道你们发现没,这两个数组的关系跟 &str 与 String 的关系很像,前者是长度固定的字符串切片,后者是可动态增长的字符串。其实,在 Rust 中无论是 String 还是 Vector,它们都是 Rust 的高级类型:集合类型,在后面章节会有详细介绍。
对于本章节,我们的重点还是放在数组 array 上。数组的具体定义很简单:将多个类型相同的元素依次组合在一起,就是一个数组。结合上面的内容,可以得出数组的三要素:
- 长度固定
- 元素必须有相同的类型
- 依次线性排列
这里再啰嗦一句,我们这里说的数组是 Rust 的基本类型,是固定长度的,这点与其他编程语言不同,其它编程语言的数组往往是可变长度的,与 Rust 中的动态数组 Vector 类似,希望读者大大牢记此点。
创建数组
在 Rust 中,数组是这样定义的:
fn main() {
let a = [1, 2, 3, 4, 5];
}
数组语法跟 JavaScript 很像,也跟大多数编程语言很像。由于它的元素类型大小固定,且长度也是固定,因此数组 array 是存储在栈上,性能也会非常优秀。与此对应,动态数组 Vector 是存储在堆上,因此长度可以动态改变。当你不确定是使用数组还是动态数组时,那就应该使用后者,具体见动态数组 Vector。
举个例子,在需要知道一年中各个月份名称的程序中,你很可能希望使用的是数组而不是动态数组。因为月份是固定的,它总是只包含 12 个元素:
let months = ["January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"];
在一些时候,还需要为数组声明类型,如下所示:
let a: [i32; 5] = [1, 2, 3, 4, 5];
这里,数组类型是通过方括号语法声明,i32 是元素类型,分号后面的数字 5 是数组长度,数组类型也从侧面说明了数组的元素类型要统一,长度要固定。
还可以使用下面的语法初始化一个某个值重复出现 N 次的数组:
let a = [3; 5];
a 数组包含 5 个元素,这些元素的初始化值为 3,聪明的读者已经发现,这种语法跟数组类型的声明语法其实是保持一致的:[3; 5] 和 [类型; 长度]。
在元素重复的场景,这种写法要简单的多,否则你就得疯狂敲击键盘:let a = [3, 3, 3, 3, 3];,不过老板可能很喜欢你的这种疯狂编程的状态。
访问数组元素
因为数组是连续存放元素的,因此可以通过索引的方式来访问存放其中的元素:
fn main() {
let a = [9, 8, 7, 6, 5];
let first = a[0]; // 获取a数组第一个元素
let second = a[1]; // 获取第二个元素
}
与许多语言类似,数组的索引下标是从 0 开始的。此处,first 获取到的值是 9,second 是 8。
越界访问
如果使用超出数组范围的索引访问数组元素,会怎么样?下面是一个接收用户的控制台输入,然后将其作为索引访问数组元素的例子:
use std::io;
fn main() {
let a = [1, 2, 3, 4, 5];
println!("Please enter an array index.");
let mut index = String::new();
// 读取控制台的输出
io::stdin()
.read_line(&mut index)
.expect("Failed to read line");
let index: usize = index
.trim()
.parse()
.expect("Index entered was not a number");
let element = a[index];
println!(
"The value of the element at index {} is: {}",
index, element
);
}
使用 cargo run 来运行代码,因为数组只有 5 个元素,如果我们试图输入 5 去访问第 6 个元素,则会访问到不存在的数组元素,最终程序会崩溃退出:
Please enter an array index.
5
thread 'main' panicked at 'index out of bounds: the len is 5 but the index is 5', src/main.rs:19:19
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
这就是数组访问越界,访问了数组中不存在的元素,导致 Rust 运行时错误。程序因此退出并显示错误消息,未执行最后的 println! 语句。
当你尝试使用索引访问元素时,Rust 将检查你指定的索引是否小于数组长度。如果索引大于或等于数组长度,Rust 会出现 panic。这种检查只能在运行时进行,比如在上面这种情况下,编译器无法在编译期知道用户运行代码时将输入什么值。
这种就是 Rust 的安全特性之一。在很多系统编程语言中,并不会检查数组越界问题,你会访问到无效的内存地址获取到一个风马牛不相及的值,最终导致在程序逻辑上出现大问题,而且这种问题会非常难以检查。
数组元素为非基础类型
学习了上面的知识,很多朋友肯定觉得已经学会了Rust的数组类型,但现实会给我们一记重锤,实际开发中还会碰到一种情况,就是数组元素是非基本类型的,这时候大家一定会这样写。
let array = [String::from("rust is good!"); 8];
println!("{:#?}", array);
然后你会惊喜的得到编译错误。
error[E0277]: the trait bound `String: std::marker::Copy` is not satisfied
--> src/main.rs:7:18
|
7 | let array = [String::from("rust is good!"); 8];
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `std::marker::Copy` is not implemented for `String`
|
= note: the `Copy` trait is required because this value will be copied for each element of the array
有些还没有看过特征的小伙伴,有可能不太明白这个报错,不过这个目前可以不提,我们就拿之前所学的所有权知识,就可以思考明白,前面几个例子都是Rust的基本类型,而基本类型在Rust中赋值是以Copy的形式,这时候你就懂了吧,let array=[3;5]底层就是不断的Copy出来的,但很可惜复杂类型都没有深拷贝,只能一个个创建。
接着就有小伙伴会这样写。
let array = [String::from("rust is good!"),String::from("rust is good!"),String::from("rust is good!")];
println!("{:#?}", array);
作为一个追求极致完美的Rust开发者,怎么能容忍上面这么难看的代码存在!
正确的写法,应该调用std::array::from_fn
let array: [String; 8] = std::array::from_fn(|_i| String::from("rust is good!"));
println!("{:#?}", array);
数组切片
在之前的章节,我们有讲到 切片 这个概念,它允许你引用集合中的部分连续片段,而不是整个集合,对于数组也是,数组切片允许我们引用数组的一部分:
let a: [i32; 5] = [1, 2, 3, 4, 5];
let slice: &[i32] = &a[1..3];
assert_eq!(slice, &[2, 3]);
上面的数组切片 slice 的类型是&[i32],与之对比,数组的类型是[i32;5],简单总结下切片的特点:
- 切片的长度可以与数组不同,并不是固定的,而是取决于你使用时指定的起始和结束位置
- 创建切片的代价非常小,因为切片只是针对底层数组的一个引用
- 切片类型[T]拥有不固定的大小,而切片引用类型&[T]则具有固定的大小,因为 Rust
很多时候都需要固定大小数据类型,因此&[T]更有用,&str字符串切片也同理
总结
最后,让我们以一个综合性使用数组的例子,来结束本章节的学习:
fn main() {
// 编译器自动推导出one的类型
let one = [1, 2, 3];
// 显式类型标注
let two: [u8; 3] = [1, 2, 3];
let blank1 = [0; 3];
let blank2: [u8; 3] = [0; 3];
// arrays是一个二维数组,其中每一个元素都是一个数组,元素类型是[u8; 3]
let arrays: [[u8; 3]; 4] = [one, two, blank1, blank2];
// 借用arrays的元素用作循环中
for a in &arrays {
print!("{:?}: ", a);
// 将a变成一个迭代器,用于循环
// 你也可以直接用for n in a {}来进行循环
for n in a.iter() {
print!("\t{} + 10 = {}", n, n+10);
}
let mut sum = 0;
// 0..a.len,是一个 Rust 的语法糖,其实就等于一个数组,元素是从0,1,2一直增加到到a.len-1
for i in 0..a.len() {
sum += a[i];
}
println!("\t({:?} = {})", a, sum);
}
}
做个总结,数组虽然很简单,但是其实还是存在几个要注意的点:
- 数组类型容易跟数组切片混淆,[T;n]描述了一个数组的类型,而[T]描述了切片的类型,
因为切片是运行期的数据结构,它的长度无法在编译期得知,因此不能用[T;n]的形式去描述 - [u8; 3]和[u8; 4]是不同的类型,数组的长度也是类型的一部分
- 在实际开发中,使用最多的是数组切片[T],我们往往通过引用的方式去使用&[T],因为后者有固定的类型大小
至此,关于数据类型部分,我们已经全部学完了,对于 Rust 学习而言,我们也迈出了坚定的第一步,后面将开始更高级特性的学习。未来如果大家有疑惑需要检索知识,一样可以继续回顾过往的章节,因为本书不仅仅是一门 Rust 的教程,还是一本厚重的 Rust 工具书。